
Population flow drives spatio-temporal 
distribution of COVID-19 in China

Jayson S. Jia, Xin Lu, Yun Yuan, Ge Xu, Jianmin Jia & Nicholas A. Christakis

This is a PDF file of a peer-reviewed paper that has been accepted for publication. 
Although unedited, the content has been subjected to preliminary formatting. Nature 
is providing this early version of the typeset paper as a service to our authors and 
readers. The text and figures will undergo copyediting and a proof review before the 
paper is published in its final form. Please note that during the production process 
errors may be discovered which could affect the content, and all legal disclaimers 
apply.

Received: 18 February 2020

Accepted: 21 April 2020

Accelerated Article Preview Published 
online 29 April 2020

Cite this article as: Jia, J. S. et al. Population 
flow drives spatio-temporal distribution 
of COVID-19 in China. Nature https://doi.
org/10.1038/s41586-020-2284-y (2020).

https://doi.org/10.1038/s41586-020-2284-y

Nature | www.nature.com

Accelerated Article Preview

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

https://doi.org/10.1038/s41586-020-2284-y


Nature | www.nature.com | 1

Article

Population flow drives spatio-temporal 
distribution of COVID-19 in China

Jayson S. Jia1, Xin Lu2,3, Yun Yuan4, Ge Xu5, Jianmin Jia6,7 ✉ & Nicholas A. Christakis8

Sudden, large-scale, and diffuse human migration can amplify localized outbreaks 
into widespread epidemics.1–4 Rapid and accurate tracking of aggregate  
population flows may therefore be epidemiologically informative. Here, we use 
mobile-phone-data-based counts of 11,478,484 people egressing or transiting 
through the prefecture of Wuhan between 1 January and 24 January 2020 as they 
moved to 296 prefectures throughout China. First, we document the efficacy of 
quarantine in ceasing movement. Second, we show that the distribution of population 
outflow from Wuhan accurately predicts the relative frequency and geographic 
distribution of COVID-19 infections through February 19, 2020, across all of China. 
Third, we develop a spatio-temporal “risk source” model that leverages population 
flow data (which operationalizes risk emanating from epidemic epicenters) to not 
only forecast confirmed cases, but also to identify high-transmission-risk locales at an 
early stage. Fourth, we use this risk source model to statistically derive the geographic 
spread of COVID-19 and the growth pattern based on the population outflow from 
Wuhan; the model yields a benchmark trend and an index for assessing COVID-19 
community transmission risk over time for different locations. This approach can be 
used by policy-makers in any nation with available data to make rapid and accurate 
risk assessments and to plan allocation of limited resources ahead of ongoing 
outbreaks.

Tracking population flows is especially exigent in the context of China’s 
COVID-19 outbreak, which began in Wuhan (a prefecture-city in the 
province of Hubei) in the run-up to Chinese Lunar New Year eve on 
January 24, 2020 with its annual chunyun mass migration (which can 
involve as many as 3 billion trips). The potential scale and range of the 
outbreak’s diffusion was particularly alarming given Wuhan’s position 
as a central hub in China’s rail and aviation networks and given the 
severity of COVID-19.

We used nationwide mobile phone data to track population outflow 
from Wuhan and linked this to COVID-19 infection counts by location 
– at the prefecture level. Our data include 296 prefectures in 31 prov-
inces and regions in China (average population 4.40 million, 94.07% 
of China’s population). Mobile phone geolocation data, which can 
reliably quantify human movement, provide precise, verifiable, and 
real-time information.5–11 We conceptualize epidemiological morbid-
ity and mortality as a function of human population movement from 
a disease origin. We thus normalize disease risk by population inflow 
from Wuhan rather than the size of local population.

Our approach differs from prior work linking individual mobility and 
disease spread1–4,12 in terms of: our use of real-time data about actual 
movement; our focus on aggregate population flows rather than indi-
vidual tracking; and our particular modeling approach. That is, other 
recent research on COVID-19 has used historical population flow data 

(e.g., previous years’ chunyun migrations) to estimate case exportation 
during the current outbreak.14–18 But the benefits of observing rather 
than estimating population movements are substantial since inaccu-
rate predictions can have important consequences for policy-making: 
under-reaction can result in disease spread, and over-reaction can lead 
to medically, socially, and economically inefficient policies. Moreover, 
distinct from prior approaches to epidemiological modelling,12–18 we 
take advantage of detailed data about population flow originating at the 
source of the outbreak to develop a population-flow-based “risk source” 
model to test the extent to which population flow data can capture 
the spatio-temporal dynamics of the spread of the SARS-CoV-2 virus.

To measure total aggregate population outflow from Wuhan prior 
to its quarantine on January 23, 2020, we used country-wide data, pro-
vided by a major national carrier, tracking all movement out of Wuhan 
between January 1 and January 24, 2020. The symptom onset of the 
first recorded case in Wuhan was December 1, 2019; by February 19, 
the end of our study period, 74,279 infection cases had been verified 
in China.19–22 Our time period includes the time that news about the 
outbreak initially appeared (on December 31, 2019 and January 9, 2020) 
and the annual Lunar New Year migration (which culminated on Janu-
ary 24, 2020). The dataset included any mobile phone user who had 
spent at least 2 hours in Wuhan during this period, and it tracked the 
total daily flow of such individuals to all other prefectures throughout 
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China. Locations were detected when users simply had their phones on. 
The dataset includes two measures of population outflow: the carrier’s 
own customer count and their extrapolated count of total population 
movement. We use the latter in our primary analyses and the former as 
a robustness check (see Supplementary Information).

We defined population flow as the total aggregate count of people 
entering any given prefecture from Wuhan during the whole observa-
tion period ( January 1 to 24). Since Wuhan (population 11.08 million 
in 2018) is a major transportation hub, many of these people were 
through travelers rather than residents. The definition is also weighted 
by number of transits through Wuhan since some people may have 
entered and exited Wuhan on several occasions in January (especially 
if they lived in neighboring prefectures). This can be thought of as a 
linear weighting of additional infection and transmission risk from 
repeated transits. There were 11,478,484 counts of movements from 
Wuhan: 8,685,007 to other prefectures within Hubei and 2,793,477 to 
prefectures in other provinces.

Key dates during this period were January 24, Lunar New Year’s Eve 
(outbound holiday travel is typically completed before this evening), 
and January 23, when Wuhan was quarantined. We observed the efficacy 
of the quarantine (Fig. 1b, c), which was manifested in a 52% (38%) drop 
of inter- (intra-) provincial population outflow on January 23 compared 
to January 22 (when there were 546,324 and 141,208 counts of intra- 
and extra- provincial travel, respectively), and a further of 94% (84%) 
drop on January 24 compared to January 23. With the imposition of 
the quarantine – first with respect to Wuhan (and two neighboring 
prefectures) at 10 a.m. on January 23, and then with respect to 12 other 
prefectures in Hubei by the end of the day on January 24 – population 
outflow from Wuhan almost completely stopped (the average daily 
outflow thereafter was just 1,087 people to all prefectures outside of 
Hubei, probably government workers).

We combined the population flow dataset with the count and geo-
graphical location of COVID-19 confirmed cases nationwide (Fig. 1), 
which used consistent and stringently enforced case ascertainment 
during this period. As of February 19, 2020, there were 74,279 infection 
cases in China; 29,867 cases occurred outside of Wuhan; and there 
were 2,006 fatalities.22

Population flow from Wuhan may be hypothesized to export the 
virus to other locations, where it causes local outbreaks (i.e., either 
by importation or “community transmission”19–22). And indeed, we 
find a strong correlation between total population flow and number of 
infections in each prefecture (Fig. 2a, b). Consistent with our hypoth-
esis, the cumulative number of infections is highly correlated with 
aggregate population outflow from Wuhan from January 1 to 24, and 
the correlation increases over time from r = 0.522 on January 24 to 
0.919 on February 5, and further to 0.952 on February 19 (p < .001 for 
all) (Fig. 2a, b, c). Since there is little travel throughout the country 
during this period, the population outflow variable is comparable to 
a lagged variable in a time series. The correlation exhibited the same 
robust pattern even when using different time windows of population 
outflow (Extended Fig. 1). The correlation between population outflow 
from Hubei province (excluding Wuhan itself) and number of infec-
tions in each prefecture (Fig. 2c) followed a similar pattern but was 
substantially weaker, r = 0.365 on January 24 to 0.583 on February 19.

For completeness, we compared the predictive strength of aggregate 
population outflow to certain other factors – such as the relative fre-
quency of Baidu search for virus-related terms in each prefecture (e.g., 
novel coronavirus, flu, SARS, atypical pneumonia, surgical mask),23–25 
each prefecture’s GDP and population, and also other movement vari-
ables. Each of these factors became less predictive of local outbreak 
size over time, either for cumulative or daily reported cases (Fig. 2c, 
d, Extended Fig.2-3).

We also evaluated a gravity model.4,13 Gravity models were originally 
developed to model flow volumes or other interactions between geo-
graphical areas based simply on distance between two locales and their 

populations. Here, we use a special case of the gravity model with only 
the “recipient” prefecture’s population variable since Wuhan is always 
the “donor” and thus a constant value (Supplementary Information 4.1). 
This model (with a significantly negative parameter for distance) pre-
dicts the high quantity of travel from Wuhan to other prefectures in 
Hubei and to geographically proximate provinces (Fig. 1). But it does not 
explain the high traffic of population outflow to more distant coastal 
cities. That outflow does not strictly follow a gravity model is not sur-
prising given the rationales for chunyun migration patterns, which are 
primarily based on social connections.8,26

We also tested a gravity model to predict the infection count. 
Although “recipient” population size and distance were significant 
predictors (p < .001), a mediation analysis shows that population flow 
from Wuhan mediates the effect of distance. Fig. 2c and 2d intuitively 
illustrate why this is the case. Aggregate population flow from Wuhan 
exhibits a high and progressively stronger correlation with infection 
prevalence in destination locations over time. In contrast, the predic-
tive strength of prefecture’s distance from Wuhan, population size, and 
GDP (an alternative source of “gravity”) declines over time. There is no 
advantage to estimating population flow and to estimating infection 
spread using estimated population flow when actual population flow 
is observable, as in our case.

Next, we use two sets of models – one cross-sectional and the other 
dynamic – to statistically model and benchmark the extent to which 
aggregate population outflow from Wuhan predicts the spread and 
distribution of COVID-19 infections across China. We develop what 
we call a “risk source” model that leverages observed population flow 
data to operationalize the risk emanating from the epidemic source.

We first modeled the effect of outflow on infection by using the fol-
lowing multiplicative exponential model:

∏y c e e= (1)
∑

i
j

m
β x λ I

=1

j ji k

n

k ik
=1

where yi is the number of the cumulative (or daily) confirmed cases 
in prefecture i (depending on the model); x1i is cumulative popula-
tion outflow from Wuhan to prefecture i from January 1 to 24; x2i is the 
GDP of prefecture i; x3i is the population size of prefecture i; m is the 
number of variables included; and c and βi are parameters to estimate. 
And λk is the fixed effect for province k; n is the number of prefectures 
considered in the analysis; Iik is a dummy for prefecture i and Iik = 1, if 
i∈k (prefecture i belongs to province k), otherwise Iik = 0. (See Supple-
mentary Information for more details.)

We applied a supervised machine learning approach with confirmed 
cases as the dependent variable to estimate the parameters of a model 
with aggregate Wuhan population outflow from January 1-24 as the sole 
variable (R2 = 0.772 on January 24 to 0.946 on February 19) and a model 
with population size and GDP as co-variates (R2 = 0.809 on January 24 
to 0.967 on February 19) (Supplementary Tables 1-2). Although these 
additional variables improve fit, the parameter for population flow 
from Wuhan becomes increasingly dominant, while a prefecture’s GDP 
and population become increasingly less predictive over time. Overall, 
the models’ performance continuously improved as more infection 
cases were confirmed, suggesting that the spreading pattern of the 
virus gradually converges to the distribution of the population outflow 
from Wuhan to other prefectures in China. As a robustness check, we 
evaluate a model using daily confirmed cases and find consistent results 
(Supplementary Tables 3-4).

The logic behind this convergence over time, as well as the mod-
el’s predictive strength, is that population flow from Wuhan to other 
prefectures fundamentally determines the eventual distribution of 
total infections in China. During the earliest phase of the outbreak, 
before the quarantine of Wuhan, there was a relative lack of aware-
ness of the virus and few countermeasures preventing its spread. 
SARS-CoV-2 should thus have spread relatively randomly across the 
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entire prefecture of Wuhan; that is, our results imply that the number 
of infected people was uniformly distributed (statistically speaking) 
in the population outflowing from Wuhan into different prefectures 
across the country.

Using the daily predicted cases in model (1), we are also able to calcu-
late a daily risk score for prefectures based on the difference between 
their predicted and confirmed cases on any given date (see Supplemen-
tary Information). A higher-than-expected level of infection suggests 
more community transmission (i.e., “underperforming” compared to 
the benchmark derived from the outflow population from Wuhan). On 
the other hand, “over-performing” prefectures, with fewer cases than 
expected are also noteworthy, since they could have implemented 
highly successful public health measures (or be prone to inaccurate 
data reporting). Extended Fig. 4 identifies prefectures with transmis-
sion risk index values over the upper bound of the 90% confidence 
interval on January 29, for example, and this was indeed associated with 
imminent quarantine. The predictive strength of aggregate popula-
tion flow from Wuhan and the overall fit of model (1) over time can also 
act as an early warning index of an epidemiological transition; they 
reflect the degree to which imported infections are dominant at any 
point in time. If model strength declines significantly at any location, 
this may indicate that community transmission may be overtaking 
imported cases.

We next developed a spatio-temporal model to explore changes in 
distribution and growth of COVID-19 across all prefectures over time 
(rather than on individual dates) (Supplementary Information 3.2). We 
use a Cox proportional hazards framework and replace the constant 
scaling parameter of model (1) with a time-varying hazard rate function 
λ0(t),which typically has an S-shaped property (e.g., logistic, general-
ized logistic, or Gompertz functions27,28) that epidemics typically follow:

∏t x t e eλ( | ) = λ ( ) (2)
∑

i
j

m
β x λ I

0
=1

j ji k

n

k ik
=1











where λ(t|xi) is the hazard function describing the number of cumula-
tive confirmed cases at time t given population outflow from Wuhan 
to prefecture i, and other variables xi={x1i, x2i, …xmi} are the realized 
values of the covariates for prefecture i; and the other notation is the 
same as model (1).

This model extends our risk source model to a dynamic context; 
it incorporates all infection cases across all locales and dates to sta-
tistically derive the COVID-19 epidemic curve and growth pattern 
across China. We used the same machine learning method as before 
to estimate the parameters (see Supplementary Information). When 
using only the single variable of total population outflow from Wuhan 
(from January 1-24) to each other prefecture, we observe R2 = 0.927 
for the exponential-logistic model (Fig. 3a); and the inclusion of local 
population and GDP increases R2 to 0.957 (alternate models are in Sup-
plementary Table 5).

We use a similar logic as before in contrasting expected and observed 
outcomes to gauge epidemiological risk. Here, model predictions 
serve as reference patterns across time (Extended Fig. 5, 6). The dif-
ferences in the growth trends between predicted and confirmed cases 
can signal higher levels of SARS-CoV-2 community transmission. We 
use the integral of the differences over time to create a total transmis-
sion risk index (normalized by subtracting the mean and dividing by 
the standard deviation) and identify a list of prefectures above and 
below the 90% confidence interval (Extended Fig. 7, Supplementary 
Table 11). Indeed, our model identifies a list of statistically significant 
“underperformers”; in most of these cases, we observed the subse-
quent imposition of quarantine (see the Supplementary Informa-
tion, including Supplementary Table 12 and Extended Fig. 8 and 9). 
On the other hand, prefectures with lower trends than expected might 
have had more successful public health measures. Fig. 3b depicts the 
dynamic shifts in risk index score for selected prefectures, which allows 

monitoring which prefectures performed better in controlling trans-
mission risk over time.

In sum, using detailed mobile phone geolocation data to compute 
aggregate population movements, we track the transit of people from 
Wuhan to the rest of China through January 24, 2020. The geographic 
flow of people anticipates the subsequent location, intensity, and tim-
ing of outbreaks in the rest of China through February 19, 2020. These 
data outperform other measures, such as population size, wealth, or 
distance from the risk source. We modeled the epidemic curves of 
COVID-19 across different locales using population flows and showed 
that deviations from model predictions served as tools to detect the 
burden of community transmission.

The logic of our population-flow-based “risk source” model dif-
fers from classic epidemiological models that rely on assumptions 
regarding population mixing, population compartment sizes, and 
viral properties. By assuming that risk arises from human population 
movements, our “risk source” model is able to parsimoniously capture 
the distribution of the epidemic. The model has several advantages: it 
makes no assumptions regarding travel patterns or effective distance 
effects; allows for non-linear estimations; generates a non-arbitrary, 
source-linked risk score; and is easily adapted to other empirical con-
texts. Importantly, the multiplicative functional form can also accom-
modate multiple risk sources – for example in countries where there 
are multiple disease epicenters. As an example, we evaluated the dis-
tinct impact of population flow from Hubei (excluding Wuhan) as an 
alternative risk source in our models, and indeed find that it had little 
impact on COVID-19 spread and growth in the country (Supplementary 
Tables 6 and 10).

We have focused on the relative strength of the outbreak in each 
area, rather than the absolute number of cases, though one can predict 
the number of cases by using reported data to calibrate the param-
eters of the model. A key contribution of our approach is to robustly 
characterize the structure or relative distribution of cases across dif-
ferent geographic areas and over time, which is driven fundamentally 
by the cumulative outflow from Wuhan. Moreover, another benefit is 
that non-systematic inaccuracy of COVID-19 case-finding is relatively 
unimportant as long as we capture the distribution of population flow 
accurately over time, which we do.

Our approach is generalizable to any dataset that captures popula-
tion movements (e.g., train ticketing or car tolling data). This method 
can also be implemented in a live fashion (if suitable data are available) 
to facilitate policy decisions – for example the allocation of resources 
and manpower across specific geographic locales based on the pre-
dicted strength of the epidemic. This could also yield a dynamic perfor-
mance metric when contrasted against real-time reports of infections, 
and, as we show, identify which areas have higher virus transmission 
risk or more effective measures.

Other techniques to forecast the levels of an epidemic in defined 
populations in advance have, of course, been proposed – whether the 
use of online searching23–25 or the use of network sensors (i.e., the moni-
toring of people who are at heightened risk for falling ill given their 
network position).29 Our approach relies on data regarding population 
flow. Indeed, historical (i.e., baseline) information about population 
flows – undisturbed by the imposition of quarantines or by publicity 
regarding outbreaks, both of which happened here – could also be 
valuable to public health experts and government officials when new 
outbreaks occur.

When people move, they take contagious diseases with them. Their 
movements are thus a harbinger of the future status of an epidemic, 
and this offers the prospect of using data-analytic techniques to control 
an epidemic before it strikes too hard.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
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Fig. 1 | Geographical distribution of population outflow and confirmed 
COVID-19 cases as of February 19, 2020. a, there is a high overlap between the 
geographic distribution of aggregate population outflow from Wuhan through 
January 24, 2020 (in red) and confirmed cases of COVID-19 in other Chinese 
prefectures (N=296, map source: National Catalogue Service For Geographic 
Information). Gray areas lack population outflow data. b, c, During what is 
historically the peak period for outbound Lunar New Year holiday travel, total 

population outflow from Wuhan to other parts of Hubei (b) is approximately 
6.5 times population outflow to outside provinces (c). Upon implementation of 
the quarantine at 10:00 a.m. on January 23, 2020, population outflow from 
Wuhan became minimal, except to the adjacent prefectures (b). In b, the first 
peak possibly corresponds to the start of winter break of (roughly one million) 
college students in Wuhan and the second peak is outbound chunyun travel.
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Fig. 2 | Factors correlated with confirmed COVID-19 cases. a, b, The 
relationship between aggregate population outflow from Wuhan (up to 
January 24) and confirmed cases by prefecture on January 26 (a) and February 
19 (b). Red circles are prefectures in Hubei; light blue circles are four 
quarantined prefectures in Zhejiang (including Wenzhou); and the six largest 
prefectures in China are indicated with unique colors. c, Relationship over time 
between number of confirmed cases (c, cumulative through February 19 on 
x-axis) and prefectures’ (i) cumulative population inflow (up to Jan. 24) from 
Wuhan, (ii) cumulative inflow from Hubei province excluding Wuhan, (iii) 
frequency of Baidu search terms related to the virus, (iv) GDP, (v) population, 
and (vi) distance from Wuhan. Over time, the correlation between population 
outflow from Wuhan and the number of infection cases increases from 

Pearson’s r = 0.522 on January 24 to r = 0.952 (N=296). The decline in the 
predictive strength of online search behavior might reflect information 
saturation, while the decline in predictive strength of GDP, population size, and 
distance suggests that late-stage chunyun migration from Wuhan was to a more 
diverse set of prefectures (and not merely to the closet, largest, and most 
developed prefectures) and/or that community transmissions began to 
predominate. The correlation with daily infections (d) is consistent, with 
Pearson’s r ranging from 0.496 on January 24 to a peak of 0.926 on February 4 
(N=296). Fluctuations are likely lags in case reporting (that are smoothed in c); 
weaker correlations on the last few days reflect that >90% of prefectures 
outside of Hubei reported no new cases.
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Fig. 3 | Predictive model based on population outflow. a, The surface 
indicates the fitted performance of our epidemiological model 
(see Supplementary Information, model (3)) with just a single variable x1i 
indicates outflow population from Wuhan to prefecture i (log transformed), for 
all prefectures, with t as the number of days after chunyun is over (i.e., t = 1 is 

January 24). The dots represents the actual number of comfired cases under a 
given x1i and t. Red dots represent prefectures where the reported number of 
confirmed cases is greater than the model’s predicted values; black dots are all 
other cases, R 2 = 0.930 (N=7,992). b, Risk scores over time provide a dynamic 
picture of shifting transmission risks in different prefectures.
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Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Data necessary to reproduce the primary results of this study are 
included in this published article.

Code availability
Code necessary to reproduce the primary results of this study is 
included in this published article.
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Extended Data Fig. 1 | Time window sensitivity test for the correlational 
analysis.  a, b, Pearson’s correlation (N = 296 prefectures) between the number 
of cumulative confirmed cases and population outflow from Wuhan on 
different days ranging from 1 to 14 days before January 24, for (a) the cumulative 
number of diagnosed cases over time, and (b) the number of newly diagnosed 
(daily) cases over time. Daily outflow is used for the calculation, e.g., t = 3 

indicates that the correlation is measured by daily outflow from Wuhan on 
January 21 with cumulative confirmed cases from January 24 
onwards. c, d, Pearson’s correlation (N = 296 prefectures) during three 
different (8-day) time periods from January 1 to 24, 2020 between population 
outflow and (c) the cumulative number of diagnosed cases over time, and (d) 
the number of newly diagnosed (daily) cases over time.

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  



Article

Extended Data Fig. 2 | Correlation with alternative population movement 
measures. Pearson’s correlation (N = 296 prefectures) between alternative 
publicly available movement measurements from the 2018 City/Prefectures 
Statistical Year Book of China (with aggregate population outflow from Wuhan 
from January 1-24, 2020 as a reference) and COVID-19 count using (a) 

cumulative confirmed cases over time, and (b) for daily confirmed cases over 
time. Foreign tourist, domestic tourist, and “highway, airway, and waterway 
passenger” numbers reflect inter-prefecture travel, while bus passengers and 
number of taxis reflect local travel.
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Extended Data Fig. 3 | Search terms and correlation with confirmed cases. 
a, Search frequency of Baidu search terms related to COVID-19. b, Pearson’s 
correlation (N = 296 prefectures) between Baidu search terms and (cumulative) 
confirmed cases of COVID-19 over time. The initially high and then declining 
predictive strength of search may reflect the fact that initially high volumes of 

information search about the virus signaled stronger risk perception in any 
given prefecture (e.g., because of early reported cases, having more relatives in 
Wuhan, etc.), but that, over time, information saturation reduced the impetus 
for specific search.ACCELE
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Extended Data Fig. 4 | Prefectures with high transmission risk index on 
January 29, 2020. The predicted structure of the spread of the SARA-CoV-2 
virus can be used as a benchmark to identify which locales deviate significantly. 
Since model (1) predicts the number of cases in a prefecture based on the 
population outflow from Wuhan (i.e., imported cases and the initial local 
community transmission of the virus), a greater difference between predicted 

and confirmed cases suggests a higher level of community transmission. 
Prefectures to the left of the dashed line have community transmission risk 
index values over the upper bound of the 90% confidence interval. Our model 
identified Wenzhou as having the most severe community transmission risk on 
January 29, 2020. And the government announced a full quarantine of the 
prefecture on February 2, 2020.
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Extended Data Fig. 5 | Benchmark (predicted) versus actual virus growth in 
Hubei’s prefectures. Model (2) used aggregate population outflow from 
Wuhan from January 1-24, 2020 to provide a reference growth pattern  
(i.e., epidemic curves) for COVID-19’s spread across time and space, without 
making a priori assumptions of growth pattern or mechanism. Differences in 
the growth trends between predicted and confirmed cases can signal higher 

levels of COVID-19 transmission (Supplementary Table 11). The discrete jumps 
in confirmed cases in some prefectures after Feb 13 reflected a change in the 
local governments’ infection count criteria; clinically diagnosed cases came to 
be included in total confirmed case counts in those prefectures (within Hubei 
province).
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Extended Data Fig. 6 | Benchmark (predicted) versus actual virus growth in 
selected prefectures outside of Hubei. Model (2) used aggregate population 
outflow from Wuhan from January 1-24, 2020 to provide a reference growth 
pattern (i.e., epidemic curves) for COVID-19’s spread across time and space, 

without making a priori assumptions of growth pattern or mechanism. 
Differences in the growth trends between predicted and confirmed cases can 
signal higher levels of COVID-19 transmission (Supplementary Table 11).
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Extended Data Fig. 7 | The distribution of transmission risk index Δi. The 
transmission risk index is the normalized score of the integral of the 
differences between actual confirmed infection cases and predicted numbers 
in our model. Prefectures above the 90% confidence interval of the index are 

likely experiencing more local community transmission than imported cases, 
and prefectures below the 90% confidence interval may have a better 
performance in the control of the virus (see Supplementary Table 11).
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Extended Data Fig. 8 | Robustness check of model (2) with different time 
lags and time window lengths. We explore which time window and time lags 
of aggregate population outflow best explain the spread and intensity of 
COVID-19. “Time window” refers to how many days of outflow data were used; 
“time lag” (0 to 23) is how many days before January 24 the time window starts. 

For example, time lag = 1 and time window = 2 is using outflow data between 
January 23-24. The surfaces show that a more recent time lag improves (a) the R2 
as well as (b) the parameter value of the population outflow coefficient in 
model (2).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Aggregated mobility data extracted from mobile phones are provided by one of the largest operators in China (regarding the total 
number of mobile phone users in China). The data on population flows and other key covariates used in the primary analyses will be 
made available upon publication. The daily infection data is public information that the government releases in China.

Data analysis We used the Levenberg–Marquardt (LM) algorithm for model estimation, and the code was from Newville et al. (2016); Software 
includes Matlab (R2018a, The MathWorks, Inc.), Python (V.3.7.4, Python Software Foundation), and ArcGIS (V.10.2, Esri). We will make 
the code available upon publication (and for review).
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data and code necessary to reproduce the primary results of this study are included in this published article for release online by Nature (and in the supplementary 
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We use  data regarding outflow population from Wuahn to different prefectures in China (ascertained with mobile phone records) to 
explore the spread of Coronavirus, ascertained by the Chinese CDC, and to assess transmission risk in difference areas.

Research sample We used aggregate population outflow data of all people transiting through Wuhan, China between Jan 1-24, 2020; data was provided by 
a major national carrier. Types of data described in SI. 

Sampling strategy We used all available population outflow data in analyses (and conducted robustness checks using all different variants/alternative 
measures of the population outflow data provided). N=296 prefectures based on available covariate data (for GDP and population) in 
statistical yearbook published by National Bureau of Statistics of China, which covered 94% of the population. Any prefectures not 
covered was due to lack of data availability from this official government source.

Data collection We obtained the aggregated mobile data via our industry partner in China and linked these records, at the level of 289 Chinese 
prefectures, to publicly available coronavirus cases in these areas.

Timing The mobility data was collected during the period January 1 to January 24, 2020; and the confirmed case data was collected starting from 
January 24 up to February 19, 2020. 

Data exclusions All data that can be matched with the China Prefectures (City) Statistical Year Book have been included in the analysis (to provide 
covariates for our model); smaller sparsely populated prefectures not covered by the official Statistic Bureau's yearbook were excluded.

Non-participation NA  We used aggregated data of all customers of the carrier that traveled through or were in Wuhan during the study period.

Randomization NA  This study was not an experiment, and it did not have experimental conditions.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study
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Animals and other organisms
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Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics We used the aggregated mobile data of the Chinese phone users transiting through Wuhan in January 2020.

Recruitment NA Population flow data was provided in aggregate form by a major Chinese carrier.

Ethics oversight This work has been supported by the National Natural Science Foundation of China for the urgent policy research (given the 
pandemic).  We do not use individual-level data, only anonymized aggregate flows, and this work is exempt from IRB review in 
China. An email to this effect was also obtained from the Yale IRB, and it has been shared with Clare Thomas, Senior Editor, 
Nature.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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